New anti-counterfeit technology, called a cyber-physical watermark, leverages edible fluorescent silk to identify medications.
The US Food and Drug Administration (FDA) has mandated that by 2023 medications have unit-level traceability through the Drug Supply Chain Security Act.
But how can this be achieved?
In a recent paper, researchers from Purdue University, US, revealed a technology that could meet this requirement.
Counterfeit medications and pharmaceutical products are just a click away from being purchased from online pharmacies via smartphone. However, the newly developed anti-counterfeiting technology could turn smartphones into lifesavers by allowing patients to simply take a picture of a cyber-physical watermark to confirm if a medication is real or not.
Purdue University biomedical engineers have developed new cyber-physical watermarks that allow people to check medication authenticity with a smartphone.
Young Kim, associate head for research and an associate professor in Purdue’s Weldon School of Biomedical Engineering, says the continued rise of counterfeit medications, pharmaceutical products and medical supplies can be attributed to the increase of online pharmacies, many of which are unregulated.
To counteract the issue, the FDA is requiring medications have unit-level traceability by 2023. But, while pharmaceutical companies currently have the ability to track boxes or sheets of medications, the jump to adding traceability directly to pills could require adding numerous manufacturing and data management steps, according to Kim.
Kim’s team proposes using small cyber-physical watermarks to trace medications and confirm whether they are real or fake, as well as allowing patients to confirm dose and frequency, and access additional information on the medicine.
People can use a smartphone app to activate a new cyberphysical watermark to detect whether the medication they are taking is real or fake. Purdue biomedical engineers have developed the cyberphysical watermark as a way to reduce fake medications.

“A paper watermark is commonly used on currency and a passport to discourage counterfeiting, and we are affixing a watermark on an individual medicine that is readable by a smartphone camera to extract a hidden digital key,” Kim said. “Purdue has an excellent track record of watermarking and inkjet printing research. We are proud that we have extended such national security research into pharmaceuticals as counterfeit medicines are a national security problem.”
The cyber-physical watermark is printed on specialised edible fluorescent silk with FDA-approved food dye using an inkjet printer. According to the researchers, using fluorescent silk is not only beneficial because it makes it difficult for counterfeiters to duplicate the watermark, but also because engineers can change the biopolymer’s shape, structure and flexibility. The engineers also addressed how to use the technology with different smartphone models, photo quality and light.
“A person can take a photo under different light conditions and will have different images. It is the same issue when patients take photos of our watermark in their phone,” Kim explained. “The reference colours on the watermark’s periphery allow us to know the true colour value of the watermarked image as each smartphone has different spectral sensitivity.”
Placed on pills using a simple sugar glue, the smallest size of watermark the team could produce is 5mm by 5mm. While the team has had success with solid pills, it is working also on developing technology for liquids.
Cyber-physical watermark technology could be used first on name-brand medications and restricted narcotics before being rolled out on over-the-counter medications and generics.
Advanced Drug Delivery Systems Market, valued at USD 234.84 billion in 2023, is on a trajectory of significant growth, projected to reach USD 352.01 billion by 2032
The U.S. Food and Drug Administration on January 15, 2025, announced its decision to ban Red Dye No. 3 also referred to as Erythrosine.
Targeted drug delivery revolutionises treatment by focusing medications on specific tissues, reducing the impact on healthy cells. Scientists enhance this precision with carriers like microspheres and nanoparticles, controlling release and absorption. Microspheres, made from biodegradable proteins or polymers, sustain drug release, making them ideal for targeted therapies, especially in oncology. Beyond drug delivery, microspheres open new possibilities across industries—from next-gen coatings to thermal insulation. With tailored sizes, shapes, and materials, they drive advancements in pharmaceuticals, advanced materials, and more.
The U.S. Food and Drug Administration (FDA) has proposed a new rule to require standardized testing of talc-containing cosmetics for asbestos. The FDA noted that this move aims to protect consumers from potential harm posed by asbestos, a known carcinogen linked to serious illnesses such as lung and ovarian cancers.
As one of the most significant holidays in China, Chinese New Year (CNY) profoundly impacts global shipping, logistics, and supply chains. Scheduled to begin on January 29, 2025, this festive period lasts up to two weeks, with many factories, ports, and businesses shutting down or operating with limited staff. Understanding the implications of CNY on your supply chain is critical to avoid disruptions and ensure seamless operations.
Disruptions in the Red Sea, Suez Canal, and Panama Canal have driven up shipping costs, sending shockwaves through the global economy.
It was truly heartwarming to see so many clients and associates visiting our stand, even as late as at the end of the show, sharing drinks and engaging in conversations.
Ocean freight rates on key global container routes have fallen again. Despite the upcoming Golden Week in China, which usually drives demand, the situation this year is slightly different, and the expected rate increase may not happen.
Highly potent active pharmaceutical ingredients (HPAPIs) are at the dangers of cross-contamination with other product forefront of pharmaceutical manufacturing. They are particularly common in targeted therapies and personalized medicines. This is primarily due to their potent therapeutic effects at low dosage forms.