Carbon dioxide (CO2) is one of the major greenhouse gases causing global warming. If carbon dioxide could be converted into energy, it would be killing two birds with one stone in addressing the environmental issues. A new photocatalyst is developed recently, which can produce methane fuel (CH4) selectively and effectively from carbon dioxide using sunlight. According to this research, the quantity of methane produced was almost doubled in the first 8 hours of the reaction process.

The research was conducted collaboratively by Australia, Malaysia, and the United Kingdom. 

Inspired by the photosynthesis in nature, carbon dioxide can now be converted effectively into methane fuel by the newly designed solar-powered catalyst, which will lower carbon emission. Furthermore, this new catalyst is made from copper-based materials, which is abundant and hence affordable.

It is found that cuprous oxide (Cu2O), a semiconducting material, has been applied as both photocatalyst and electrocatalyst to reduce carbon dioxide into other chemical products like carbon monoxide and methane in different studies. However, it faces several limitations in the reduction process, including its inferior stability and the non-selective reduction which causes the formation of an array of various products. Separation and purification of these products from the mixture can be highly challenging and this imposes technological barrier for large scale application. Furthermore, cuprous oxide can be easily corroded after brief illumination and evolve into metallic copper or copper oxide.

To overcome these challenges, a novel photocatalyst is synthesized by enwrapping cuprous oxide with copper-based metal-organic frameworks (MOFs). Using this new catalyst, pure methane gas can selectively be produced.  When compared with cuprous oxide without MOF shell, cuprous oxide with MOF shell reduced carbon dioxide into methane stably under visible-light irradiation with an almost doubled yield. Also, cuprous oxide with MOF shell was more durable and the maximum carbon dioxide uptake was almost seven times of the bare cuprous oxide.

Moreover, the research team discovered that the cuprous oxide was stabilized by the conformal coating of MOF. The excited charges in cuprous oxide upon illumination could efficiently migrate to the MOF. In this way, excessive accumulation of excited charges within the catalyst, which could lead to self-corrosion, was avoided. Hence extended the catalyst’s lifetime. The next step will be to further increase the methane production rate and explore ways to scale up both the synthesis of the catalyst and the reactor systems. In the entire process of converting carbon dioxide to methane, the only energy input we have used was sunlight. We hope in the future, carbon dioxide emitted from factories and transportation can be ‘recycled’ to produce alternate fuels.

Reference: Angewandte Chemie, titled “Metal-Organic Frameworks Decorated Cuprous Oxide Nanowires for Long-lived Charges Applied in Selective Photocatalytic CO2 Reduction to CH4”

More News
US-India Tariffs Updates
News · 01/09/2025

Donald Trump’s tariffs of 50% have come into force on most US imports from India. India’s giant generic pharmaceuticals sector and its electronics and petroleum products are exempt from the tariffs. Aluminium, steel and copper remain at 25%, but job-heavy sectors such as textiles, jewellery, seafood and leather are squarely in the line of fire.

READ MORE
ECHA publishes updated PFAS restriction proposal
News · 01/09/2025

The European Chemicals Agency (ECHA) has published the updated proposal to restrict per- and polyfluoroalkyl substances (PFAS) under the EU’s chemicals regulation, REACH. The update has been prepared by the authorities from Denmark, Germany, the Netherlands, Norway and Sweden, who submitted the initial proposal in January 2023.

READ MORE
European chemical industry laments 15% US tariff
News · 04/08/2025

Most chemicals exported from the 27 member countries of the European Union into the US will be subject to a 15% tariff on top of their selling prices under an agreement signed on July 27 between the US and the European Commission.

READ MORE
Empowering Healthcare Together – The science of biologics meets the strength of distribution
News · 01/07/2025

We’re thrilled to announce a new strategic alliance between ExSyn, Exim-Indis and simABs, a leading EU-based biologics manufacturer known for its patented continuous flow technology in antibody production.

READ MORE
U.S. Tariffs Update – May 2025!
News · 02/06/2025

The global trade landscape is undergoing significant changes following the announcement of new reciprocal tariffs by the United States government. Recent developments indicate significant shifts in global trade dynamics, with key policy adjustments, ongoing negotiations, and evolving logistics patterns. Below is a summary of the latest developments.

READ MORE
Major Regulatory Changes in 2025
News · 02/05/2025

In January 2025, the US FDA published a draft regulatory guidance entitled “The Considerations for Use of Artificial Intelligence to Support Regulatory Decision-Making for Drug and Biological Products”.

READ MORE
Technologies And Strategies Reshaping Regulatory Trends
News · 02/05/2025

The adoption of artificial intelligence (AI) and large language models (LLMs) is rapidly reshaping clinical research and drug development.

READ MORE
Biomanufacturing proliferates in chemicals
News · 31/03/2025

In the quest for increased sustainability, a lot has been made of the potential to use bio-based raw materials, captured CO2 and recycled plastics as raw materials for new chemicals. But what about using biotech processes to manufacture chemicals? Could it offer a more sustainable alternative to traditional petrochemical processing, and be more amenable to biobased raw materials?

READ MORE
New Trump tariffs worry North American chemical industries
News · 31/03/2025

High duties on imports from Canada, Mexico and China raise problems for international supply chains.

READ MORE